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Abstract

Hebbian plasticity in artificial neural networks is compelling
for both its simplicity and biological plausibility. Changing the
weight of a connection based only on the activations of the neu-
rons it connects is straightforward and effective in combination
with neuromodulation for reinforcing good behaviors. How-
ever, a major obstacle to any ambitious application of Hebbian
plasticity is that the performance of a layer of Hebbian neu-
rons is highly sensitive to the choice of inputs. If the inputs
do not represent precisely the features of the environment that
Hebbian connections must learn to correlate to actions, the
network will struggle to learn at all. A recently-proposed solu-
tion to this problem is the Real-time Autoencoder-Augmented
Hebbian Network (RAAHN), which inserts an autoencoder
between the inputs and the Hebbian layer. This autoencoder
then learns in real time to encode the raw inputs into higher-
level features while the Hebbian connections in turn learn to
correlate these higher-level features to correct actions. Until
now, RAAHN has only been demonstrated to work when it is
driven by an autopilot during training (in a robot navigation
task), which means its experiences are carefully controlled.
Progressing significantly beyond this early demonstration, the
present investigation now shows how RAAHN can learn to
navigate from scratch entirely on its own, without an autopilot.
By removing the need for an autopilot, RAAHN becomes a
powerful new Hebbian-centered approach to learning from
sparse reinforcement with broad potential applications.

Introduction
As a key mechanism behind adaptation in natural organisms,
neural plasticity has attracted significant interest in artificial
life (alife) (Floreano and Urzelai, 2000; Niv et al., 2002;
Soltoggio et al., 2008, 2007; Soltoggio and Jones, 2009;
Soltoggio and Stanley, 2012; Risi et al., 2011; Risi and Stan-
ley, 2012; Stanley et al., 2003; Coleman and Blair, 2012).
A popular option for studying neural plasticity in artificial
neural networks (ANNs) is Hebbian learning, which follows
the simple mechanism of increasing connection weights pro-
portionally to the activation strengths of the neurons they
connect (Hebb, 1949). For example, researchers often in-
corporate Hebbian learning into evolutionary algorithms that
evolve ANNs to control agents in dynamic or uncertain envi-
ronments (Floreano and Urzelai, 2000; Soltoggio et al., 2008;

Risi et al., 2011). Sometimes such Hebbian networks are ac-
companied by neuromodulation (Soltoggio et al., 2008, 2007;
Soltoggio and Jones, 2009; Soltoggio and Stanley, 2012; Risi
and Stanley, 2012; Coleman and Blair, 2012), which allows a
reward or penalty signal to turn on or off the plasticity of Heb-
bian connections appropriately. However, a major obstacle to
the success of Hebbian ANNs is that the inputs to Hebbian
layers must be carefully selected to encompass the right in-
coming environmental features or the proper correlations will
otherwise become too difficult to learn. In domains in which
the right features may not be known a priori, or where it may
even be necessary to learn them from raw inputs through
experience, Hebbian learning thereby becomes brittle or even
prohibitive.

Responding to this challenge, Pugh et al. (2014) proposed
recently that it might be possible to bridge the gap between
the raw inputs to an ANN and a Hebbian layer through an
autoencoder, which is itself an ANN with at least one hidden
layer that is trained to reconstruct its inputs (Bengio, 2009).
The value of the hidden layer in the autoencoder is that it
typically comes to represent higher-level features of the envi-
ronment (because they then aid in the reconstruction of the
inputs). These higher-level features distilled from raw inputs
could be just the features needed by a Hebbian layer to learn
correlations between environmental features and appropriate
agent actions. The idea behind Pugh et al. (2014) is that in
principle both an autoencoder layer and a neuromodulated
Hebbian layer can be learned simultaneously, in real time,
which would allow an agent to construct a higher-level repre-
sentation of its environment at the same time as it learns to
navigate based on that developing representation. Pugh et al.
(2014) call this hybrid combination of autoencoder and Heb-
bian layers a Real-time Autoencoder-Augmented Hebbian
Network (RAAHN).

To validate RAAHN, Pugh et al. (2014) showed that it can
learn key features of a two-dimensional maze domain at the
same time as learning to navigate the domain in real time.
Furthermore, a pure Hebbian learner could not effectively
learn the same policy, thereby confirming the advantage of
Hebbian learning from the autoencoder layer. However, a



major limitation of this demonstration is that the agent was
guided during learning by an autopilot that ensured that the
agent experienced a prescripted succession of inputs identi-
fied by the experimenters as appropriate to the task. In this
way, the autopilot phase resembles supervised learning more
than the kind of autonomous exploratory learning one might
hope to see in alife. Ideally, the agent would explore on
its own, accumulating higher-level features as it goes, and
improving its ability to navigate based on those features at
the same time.

The aim of this paper is to take that next step, demonstrat-
ing that RAAHN is indeed sufficiently capable of doing all
the learning on its own, without an autopilot to guide it. Such
a result would open up a broad range of possible experiments
and applications, where agents can be released into a world
to explore and learn without explicit guidance, more in the
spirit of reinforcement learning (RL) (Watkins and Dayan,
1992; Rummery and Niranjan, 1994) than supervised learn-
ing. To enable this capability, RAAHN is slightly elaborated
through a new kind of novelty-based history buffer (which
decides from which experiences it is trained) and neural noise
to encourage autonomous exploration. The result, demon-
strated in a two-dimensional maze domain, is ultimately that
RAAHN can learn effectively on its own, and furthermore
that RAAHN can learn even when the provided sensors are
insufficient for neuromodulated Hebbian learning.

With RAAHN’s ability to learn control policies and higher-
level features in real time established, RAAHN can be-
gin to be employed in more sophisticated unguided scenar-
ios. RAAHN also goes beyond traditional RL algorithms
(Watkins and Dayan, 1992; Rummery and Niranjan, 1994)
because it has the potential to learn increasingly high-level
features through stacking autoencoders (Le et al., 2012) in
the future. Such autoencoder stacks and entire RAAHN archi-
tectures potentially can even be evolved in the future through
neuroevolution (Stanley and Miikkulainen, 2002; Floreano
et al., 2008; Yao, 1999). As a first step towards such ends, this
study accordingly establishes best practices for successfully
running RAAHN without the need for an autopilot.

Background
Before previewing the original work on RAAHN, this section
begins with a review of Hebbian learning and autoencoders,
which are the two core components of RAAHN.

Hebbian Learning

Basic Hebbian learning is implemented in ANNs with the
simple learning rule

∆wi = ηxiy, (1)

where wi is the weight connecting two neurons with activa-
tions xi and y, and η is the learning rate. This learning rule

has the advantage of being completely local, making its ap-
plication flexible. It is also biologically motivated, reflecting
basic principles of neural plasticity.

Researchers interested in evolving ANNs in particular took
interest in the Hebbian rule as a means to allowing evolved
ANNs to exhibit plasticity during their lifetime (Floreano and
Urzelai, 2000; Niv et al., 2002; Risi and Stanley, 2010; Risi
et al., 2011; Stanley et al., 2003). Furthermore, by adding
neuromodulation to the basic Hebbian learning rule, Hebbian
ANNs are able to be trained with rewards and penalties simi-
lar to reinforcement learning algorithms (Watkins and Dayan,
1992). Neuromodulation allows an experience to strengthen,
weaken, or have no effect on learned Hebbian correlations
by associating a modulatory signal with the experience. The
modulatory signal can be calibrated to guide learning based
on an agent’s behavior within its environment. Interestingly,
neuromodulation has been shown to elicit agent behavior
reminiscent of operant conditioning in animals (Soltoggio
and Stanley, 2012; Soltoggio et al., 2013). Researchers in
neuroevolution and artificial life have also shown that evolu-
tionary algorithms benefit from Hebbian learning combined
with neuromodulation by allowing their discovered ANNs
to learn from reward signals (Soltoggio et al., 2008, 2007;
Soltoggio and Jones, 2009; Soltoggio and Stanley, 2012; Risi
and Stanley, 2012; Coleman and Blair, 2012).

A major obstacle to building a general learning system
around the Hebbian rule is that its success depends greatly
upon receiving inputs that correspond to precisely the domain
features necessary to learn the right correlations for the task
(Field, 1994). RAAHN introduced the idea of placing an
autoencoder, reviewed next, before the Hebbian layer so that
such essential features can be learned from raw inputs without
the need for human engineering.

Autoencoders
An autoencoder is an ANN that is trained to learn a feature
representation of its inputs that is conceptually at a higher
level. For example, edge detectors are a higher-level feature
of images than raw pixels (Hinton and Salakhutdinov, 2006).
The autoencoder achieves such representation by encoding its
inputs in a hidden layer (the learned feature representation)
that is then decoded by an output layer (of the same dimen-
sionality as the input layer) representing the autoencoder’s
reconstruction of its inputs. The autoencoder is trained to
minimize the error between its reconstruction and its inputs
(Bengio et al., 2013). Rather than a different set of weights
representing the encoder and the decoder, the same set of
weights can compute both the encoding and reconstruction,
which is called tied weights (Vincent, 2011).

Deep learning researchers attracted fresh interest in au-
toencoders by showing that they can be stacked into layers
that learn increasingly high-level features (Le et al., 2012).
That way, for example, raw inputs can be encoded into edge
detectors, which can be encoded into increasingly high-level



concepts until face detectors arise. There are many ways to
train autoencoders, and many heuristics to help them learn
meaningful feature representations (Ranzato et al., 2006; Le
et al., 2012), but for RAAHN the precise autoencoder im-
plementation is not the key concern because in theory any
autoencoder can be plugged into RAAHN, so as autoencoders
improve, RAAHN also improves.

RAAHN
RAAHN was recently introduced by Pugh et al. (2014), who
were motivated by the limitations of Hebbian learning to com-
bine an autoencoder with the Hebbian layer so that Hebbian
correlations could be learned from the features extracted by
the autoencoder. The idea is that in theory both the features
and the neuromodulated Hebbian correlations can be learned
in real time, as an agent navigates its environment, thereby
offering an appealing new approach to reinforcement-like
learning. However, this original work relied on an initial
autopilot phase for RAAHN to learn a feature set represen-
tative of the domain. The autopilot in effect ensures that the
feature set learned by the autoencoder is reliable and consis-
tent because the learner is forced to encounter a prescripted
chronology of experiences. While this setup helps to demon-
strate that RAAHN can learn in principle, it is in effect a
form of supervised learning, which leaves open the question
of whether RAAHN can really learn on its own in real time.

Approach
The key hypothesis driving this paper is that RAAHN can
still perform well in real time even without an initial autopilot
phase if the autoencoder component learns a good feature set.
Most of the original RAAHN setup from Pugh et al. (2014)
does not need to change, but there are several proposed imple-
mentation differences to support fully autonomous learning.
The experiments in this paper will apply RAAHN to a similar
two-dimensional agent navigation task to that in Pugh et al.
(2014), where the agent learns on every simulation tick.

Autoencoder Component
The autoencoder implementation follows conventional prac-
tice (Hinton and Salakhutdinov, 2006; Bengio, 2009). In
particular, it computes neural activations with tied weights
trained with stochastic gradient descent and error backpropa-
gation. Recall that the aim of an autoencoder is to reproduce
its own inputs. That way, its hidden layer becomes an encod-
ing of the input space that captures its essential underlying
features. The forward activation Aj for a hidden neuron j
with input neurons I is calculated with

Aj = σ

(∑
i∈I

(Ai · wi,j)

)
, (2)

where σ is the activation function (in this paper the logistic
function), Ai is the activation of a given input neuron i ∈ I ,

and wi,j is the weight between input neuron i and hidden
neuron j. After calculating the forward activations, the back-
ward activation Bi (whereby the reconstruction is computed)
for every input neuron is calculated with

Bi = σ

∑
j∈H

(Aj · wi,j)

 , (3)

where σ is still the logistic function, and Aj is the previously
computed activation for a hidden neuron j ∈ H .

The backward activations thus serve as reconstructions of
the original inputs. With these reconstructions, the recon-
struction error Ei can be calculated for each input i:

Ei = Ai −Bi. (4)

From these error values the delta δi is calculated for each
input neuron i, which will help to compute backpropagated
error:

δi = Ei · σ′(Bi), (5)

where σ′
i is the derivative of the logistic function at the

reconstruction Bi for the input neuron i. Now the delta for a
given hidden neuron j can be calculated as

δj =

(∑
i∈I

(δi · wi,j)

)
σ′(Aj), (6)

where δi is from equation 5, wi,j is from equation 2, and
σ′(Aj) is the derivative of the logistic function at the forward
pass Aj for hidden neuron j.

With the original error deltas δi and backpropagated error
deltas δj , the tied weights of the autoencoder component can
be updated. The change in weight ∆wi,j for the connection
from input neuron i to hidden neuron j is then

∆wi,j = α (δiAj + δjAi) , (7)

where α is the learning rate (held constant in later experi-
ments at 0.1), and the remaining variables as described above.

In RAAHN this autoencoder is trained in real time as the
agent explores its world, raising the question of on what data
it should be trained at any given tick. To address this ques-
tion a history buffer saves n experiences (sets of rangefinder
values) that the agent encounters in the domain. However,
the method through which these n experiences are chosen
turns out instrumental in facilitating the novel real-time ex-
ploratory autonomy of RAAHN investigated in this paper, as
explained next.

History Buffer Management
A simple way to manage the history buffer is to save ev-
ery experience as it is discovered and drop the oldest ones
when the buffer is at capacity. This method is called Queue-
RAAHN because the history buffer is in effect managed as



a queue. It gives RAAHN the ability to learn a feature set
from past experiences in the domain, but it also has the sig-
nificant downside that the history buffer may accumulate too
much of a single kind of experience (e.g. crash experiences),
eventually causing it to “forget” other important aspects of
the domain. While this approach worked in research by
Pugh et al. (2014) under the controlled environment of the
autopilot, when RAAHN is allowed to run autonomously the
chance of a succession of negative experiences like crashes
is much higher.

To address this problem the history buffer can instead
be managed by saving only the most novel experiences en-
countered during the agent’s lifetime. That way, commonly
repeated experiences (such as crashing into a wall), will not
come to occupy the entire buffer. This new method is called
Novelty-RAAHN. To determine the novelty of an experience
the Euclidean distance is calculated between it and all the
other experiences in the buffer. Inspired by the calculation of
novelty in the novelty search algorithm (Lehman and Stanley,
2011), the experience is then assigned a novelty score, which
is the sum of the 20 smallest such distances. The current
experience is then added to the buffer only if its novelty score
is greater than that of the least novel experience in the buffer,
which it replaces. That way, the buffer fills with diverse
rather than redundant experiences that give the autoencoder
a representative sample of the entire domain.

Hebbian Component
The Hebbian component of RAAHN, which learns a con-
troller based on the features from the autoencoder, trains with
the reconfigure and saturate method described by Soltoggio
and Stanley (2012). This method adds a modulatory signal
(which can either be positive or negative) to the basic Heb-
bian learning rule, thus giving reward and penalty feedback
to the otherwise-naive Hebbian component. The modulatory
signal m influences the weights through the update equation

∆wi = mηxiy, (8)

where η is the learning rate, and xi and y are the activations of
the two neurons connected by the weight wi. As prescribed
by reconfigure and saturate, noise is added to each output
and weight delta to facilitate exploration (which is essential
when there is no autopilot). Thus the noisy activation Aj for
each output neuron is computed as

Aj = σ

(∑
i∈I

(xiwi,j)

)
+ ξj , (9)

where ξj is the neural noise associated with Aj . Noise is
added to each weight delta with

∆wi = mηxiy + ξi, (10)

where ξi is noise sampled from the same distribution as ξj in
equation 9 (in this paper: a uniform distribution in the range
[−0.1, 0.1]).

Hebbian and RAAHN Architectures
The experiments in this paper compare pure Hebbian learning
and RAAHN in a two-dimensional agent navigation domain.
The raw inputs for both pure Hebbian and RAAHN come
from 11 simulated wall-sensing rangefinders. Both network
architectures output a single value denoting the fraction of
the maximal turn angle to steer the agent. The pure Heb-
bian architecture is simple in that it merely connects the raw
inputs directly to the output with a single layer of Hebbian-
trained connections (figure 1a). The RAAHN architecture
includes two layers of weights and an intervening five-neuron
hidden layer (figure 1b), where the first layer of weights is
trained by the autoencoder learning rule and the second layer
is Hebbian-trained. Therefore, RAAHN’s Hebbian compo-
nent essentially learns driving behavior from a set of five
higher-level features extracted from the raw inputs by the
autoencoder component. The number five, which preliminary
experiments suggest is not sensitive to minor variation, is
chosen to avoid learning only the identity function.

Experiments and Results
Recall that the hope in this paper is to advance beyond the pre-
vious finding that RAAHN can navigate a two-dimensional
maze domain with an initial autopilot-driven training phase
(Pugh et al., 2014). Although that study established that
RAAHN can learn features as it learns to control, the more
exciting potential of RAAHN is the ability to learn by itself,
without an autopilot, in the spirit of real organisms.

By promising to learn new features at the same time as it
learns a control policy even without any preliminary train-
ing, RAAHN adds a novel capability over and above what
modulated Hebbian plasticity can offer. However, that new
capability also raises the possibility that RAAHN might be
overall more difficult to train without the help of the autopilot.
For that reason, the experiments that follow establish first
that RAAHN remains competitive with Hebbian on problems
that Hebbian can solve. Once that is established, showing
in effect that the new capabilities of RAAHN cost very lit-
tle, the next logical step is an experiment that shows that on
some problems (where feature learning is essential), RAAHN
becomes critical to making effective learning possible.

Queue-RAAHN Experiment
To explore the potential of RAAHN to learn through its own
exploration, a two-dimensional maze experiment similar to
the one carried out by Pugh et al. (2014) is conducted without
the initial autopilot. Instead, the agent is allowed to learn
from its own decisions as it explores the world, as described
in the Approach section.

Queue-RAAHN manages its history buffer as a queue. Ev-
ery experience is saved in real time and the oldest experiences
are deleted when the buffer is at capacity. Recall that the ex-
periences in the buffer will periodically train the autoencoder
in real time. This simple queue-based approach to storing
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Figure 1: Hebbian and RAAHN Architectures. The Hebbian architecture (a) simply connects the 11 rangefinder inputs to the
one output corresponding to the agent’s steering. The RAAHN architecture (b) introduces an autoencoder layer between the
rangefinder inputs and the steering output. The first layer of connections is trained as the autoencoder with tied weights, to learn
(in the experiment) five high-level features from the rangefinder inputs. These features are then connected in RAAHN to the
steering output with Hebbian-trained connections.

experiences gives the agent memory of previous experiences
so it does not immediately forget them.

To test this approach (and others to be introduced shortly),
the agent is given 11 rangefinders (depicted in figure 2) to
detect how close it is to nearby walls. The rangefinders are
separated from each other by an angle of 18 degrees. The two
rangefinders at the edges of the range are 90 degrees from
the middle rangefinder. Each rangefinder in this first experi-
ment is 350 units long; the whole track is 3,140 units from
left to right and 2,160 units from top to bottom. Rangefind-
ers produce a minimum activation of 0.0 when they do not
intersect walls, and a maximum activation of 1.0 when the en-
tire rangefinder intersects a wall. Intermediate intersections
produce an activation between 0.0 and 1.0.

Queue-RAAHN is compared to a single-layer neural net-
work with Hebbian connections. The aim is to show that
the autoencoder layers in RAAHN, which are lacking in the
Hebbian network, do not diminish the ability of RAAHN to
learn on its own in real time compared to the Hebbian layer
alone. The agents controlled by Queue-RAAHN and the Heb-
bian neural network are referred to as Queue-RAAHN and
Hebbian, respectively. Both neural network topologies take
the 11 inputs and produce one output denoting the turning
angle, with a range of [-2.0, 2.0]. A turn angle output of 2.0
changes the agent’s direction by 2.0 degrees for the given tick.
The neural network topology of Queue-RAAHN includes an
autoencoder with a hidden layer of five neurons to learn fea-
tures from the 11 rangefinder inputs, as depicted in figure 1b.
The history buffer size for Queue-RAAHN is 500. For both
methods Hebbian training occurs once every tick based on
only the most recent experience. In Queue-RAAHN the au-
toencoder component also trains on 20 randomly-selected ex-
periences from the history buffer (which for Queue-RAAHN
is of course managed as a queue). The learning rates for
autoencoder and Hebbian training (for the Hebbian layer of
RAAHN and the pure Hebbian network) are held constant

at 0.1 and 1.0 respectively. Both the single-layer Hebbian
network and the Hebbian component of Queue-RAAHN re-
ceive positive modulation for turning away from walls, and
negative modulation for turning towards walls, in the range
of [-1.0, 1.0], where the magnitude of modulation is propor-
tional to the magnitude of the turn. The wall chosen for this
calculation is the closest wall colliding with an imaginary
line projecting from the center of the agent 400 units in the
direction the agent is facing. If the imaginary line does not
intersect any wall then modulation is zero.

The simulation is run 200 times for both methods, each
time for 10,000 ticks (i.e. simulation state updates). Agents
that fail to complete at least one lap are complete failures.
Agents that complete more than one lap but fewer than four

Figure 2: X-Shaped Domain. The track is not uniform to
ensure the agent does not simply just repeat one behavior
several times. The red dot in the center determines agent
performance; every time the agent completes a circle around
the dot, it completes one lap.



laps are partial failures because their performance is less
than half that of correctly-driving agents.

Hebbian on average completes 9.2 laps and exhibits no
complete failures nor partial failures. However, Queue-
RAAHN on average completes 7.8 laps (which is signifi-
cantly less at p < 0.01; Student’s t-test) and yields 14%
complete failures and a further 1% partial failures. The fail-
ure of Queue-RAAHN to approximate the performance of the
plain Hebbian network suggests that the queue-based learn-
ing approach does not enable RAAHN to approach optimal
performance.

Observing runs visually in real time reveals that after col-
liding with a wall, Queue-RAAHN agents either escape after
a few hundred ticks or else become stuck for the duration of
the run. Interestingly, an analysis of Queue-RAAHN neural
networks suggests that this behavior results from poor driving
compounded with poor representation. That is, sometimes
agents drive poorly initially, which leads them to fill their his-
tory buffer with only crash experiences. This misadventure
then leads to learning a poor feature set also representative
only of crash experiences. The poor feature set then makes
it difficult for such agents to escape their perpetual crashing
and learn the types of better driving behaviors employed by
agents who complete more laps.

Thus one hypothesis is that the main problem with Queue-
RAAHN is that the autoencoder is unable to learn a feature set
that is representative of the entire domain. If this hypothesis
is true then if the feature set is constrained to be novel and
therefore representative of the entire domain, RAAHN should
perform about as well as Hebbian, which is tested next.

Novelty-RAAHN Experiment
By constraining the history buffer of RAAHN to contain only
the most novel experiences, the data set on which RAAHN
trains can become representative of the entire domain. For
example, when the agent crashes into a wall, because crash
experiences tend to be similar, they are not able to flood the
buffer the way they do in Queue-RAAHN. By thereby avoid-
ing a buffer with only one or few kinds of experience, the
history buffer accumulates experiences of the entire domain
as the agent explores it. This experiment uses the same pa-
rameters as the previous experiment aside from the difference
in history buffer management. The novelty constraint on the
history buffer still allows the simulation to run in real-time,
as can be observed in the source available at:

http://eplex.cs.ucf.edu/uncategorised/software

The simulation is run 200 times for 10,000 ticks each. On
average Novelty-RAAHN completes 8.8 laps, which is sig-
nificantly above the 7.8 laps achieved by Queue-RAAHN
(p < 0.05; Student’s t-test). While the 8.8 laps of Novelty-
RAAHN is still significantly below the 9.2 of Hebbian alone
(p < 0.01; Student’s t-test), this difference is small (less than
one lap), and moreover some small disparity is essential in

practice because Novelty-RAAHN must consume some extra
time at the beginning of each run acquiring a novel set of
experiences. Novelty-RAAHN also suffers only 0.5% com-
plete failures and no partial failures. Thus it is likely close
to performing as well as possible for a method that learns
both features and policy at the same time. In conclusion, in
this task in which the Hebbian network is provided a good
input representation, RAAHN can learn in real time to ap-
proximate the same performance all while learning its feature
representation in real time as well.

Increased Rangefinder Length Experiment
While it is important to establish that RAAHN can learn a
representation in real time competitive with Hebbian alone,
RAAHN’s real promise is to learn better feature representa-
tions that overcome the limitations of the raw sensors. One
way to investigate this idea is to degrade the quality of the
rangefinders by increasing their length. Such an increase
makes distinguishing different situations more difficult by
forcing more sensory input into the agent as the sensors in-
tersect walls more frequently and with greater activation. In
theory RAAHN can overcome this challenge to some extent
because it learns a new representation from the sensory input.
However, Hebbian is forced to learn from degraded inputs.

To investigate whether RAAHN can indeed gain an advan-
tage by learning a new feature representation, this experiment
tests Hebbian and Novelty-RAAHN over ten variations of
rangefinder lengths. These variants range from 10% longer to
100% longer with an interval of 10% between each variant.

The simulation is run for each variant 100 times, each for
10,000 ticks. As the rangefinder length increases both Heb-
bian and Novelty-RAAHN experience significantly more fail-
ures. However, Novelty-RAAHN indeed exhibits far fewer
failures (figure 3). Hebbian begins to experience dozens of
failures as early as 30%, 40%, and 50% longer while Novelty-
RAAHN experiences fewer than four complete failures and
fewer than seven partial failures at the same lengths. In addi-
tion, the number of laps completed by Novelty-RAAHN is
significantly greater from 30% onward (p < 0.05). Novelty-
RAAHN is only affected eventually by dramatically increas-
ing the rangefinder lengths to values that provide little dis-
cernible information. Thus Novelty-RAAHN is significantly
less sensitive to the precise sensory setup than Hebbian.

Discussion and Future Work
The experimental results establish for the first time that
RAAHN is able to learn effective maze navigation behavior
without the need for an autopilot. This achievement opens
up a wide range of application domains because it means
RAAHN does not need knowledge of the problem domain
a priori. Interestingly, the implication is also that RAAHN
can now be applied to conventional RL problems where train-
ing data is not labeled because now RAAHN only needs a
modulation scheme to learn Hebbian correlations. Of course,

http://eplex.cs.ucf.edu/uncategorised/software
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Figure 3: Complete and Partial Failures (lower is better). The number of complete failures (a) and complete plus partial
failures (b) is shown for Hebbian and Novelty-RAAHN for rangefinder length increments between 0% and 100%. In both cases,
the fact that Novelty-RAAHN completes significantly more laps in all cases from 30% longer onward (p < 0.01 for all 30% and
above) is reflected in the higher number of runs that fail for Hebbian.

because RAAHN is significantly different from conventional
RL algorithms such as Q-learning (Watkins and Dayan, 1992)
or SARSA (Rummery and Niranjan, 1994) its strengths and
weaknesses are likely different as well, but the opportunity
for an entirely new path of research in this direction offers
the potential for new discoveries and insights that would not
emerge from conventional RL.

For example, already in this paper we begin to glimpse
some principles behind learning a useful feature set in real
time. In particular, it is likely that Queue-RAAHN performs
significantly worse than Novelty-RAAHN because it has a
tendency to “forget” salient aspects of the domain if they are
not constantly revisited, as is the case when an agent crashes
into a wall for an extended period of time: eventually its
buffer becomes filled entirely with crash experiences that
offer little utility beyond the scenario of a crash. Novelty-
RAAHN avoids this trouble by only forgetting experiences
that are redundant, instead attempting to maintain a set of
experiences representative of the entire domain. The success
of the novelty-driven buffer in Novelty-RAAHN thus hints
at the importance of gathering and retaining experience in a
principled manner.

Advances in autoencoders, which provide RAAHN the
ability to represent higher-level concepts related to its do-
main, also lead to possible enhancements to RAAHN as well.
In this way, RAAHN’s potential reaches beyond simply cal-
ibrating sensitivity to a range of input parameters. Rather,
as the domains in which RAAHN is applied become more
complex, so does the possibility for more interesting feature
sets. RAAHN can potentially stack several autoencoders
(Hinton and Salakhutdinov, 2006) to learn high-level features
from the complex data of vision, audition, or any other sen-
sory modalities. The correlations learned by the Hebbian
component can then serve to respond to those features in
real time. It may also be possible to adapt RAAHN archi-

tectures through neuroevolution (Stanley and Miikkulainen,
2002; Floreano et al., 2008; Yao, 1999). If the topology of a
RAAHN architecture can change over evolution, the process
of finding an effective architecture (including autoencoder
stacks) could be automated.

Furthermore, by pairing Hebbian learning with an autoen-
coder, much more becomes possible through Hebbian modu-
lation than would be possible in a simple Hebbian network
alone (without an autoencoder), thereby breathing new life
into research focused on Hebbian learning. Supporting this
view, when rangefinder lengths are extended beyond what is
optimal, RAAHN exhibits significantly fewer failures than
Hebbian alone. The performance of Hebbian alone degrades
quickly without the autoencoder because Hebbian learns cor-
relations best with sparse input activations (Olshausen and
Field, 2004). With very long rangefinders, most of the in-
puts are highly active at any given time, so Hebbian cannot
learn meaningful correlations. RAAHN’s performance does
not degrade as quickly because its autoencoder transforms
the highly active inputs into more distributed features better-
suited for the Hebbian component to learn effective driving
behavior. Sparse autoencoders (Le et al., 2012) might help
to limit such degradation even further.

As an example of how recent work in Hebbian learning can
enhance RAAHN, new ideas on augmenting Hebbian connec-
tions to react to distal rewards (Soltoggio, 2015) (i.e. rewards
from far away in time) can potentially shift RAAHN from its
current limited temporal context to learning long-term causal
dependencies. Recurrent connections might further allow
learning to react to experiences from the past. These pos-
sibilities in effect draw on advances in Hebbian learning in
general, and provide fuel for further research into improving
Hebbian learning.

Finally, as a novel approach to RL, RAAHN aligns natu-
rally with research in alife because agent behavior is shaped



in RAAHN through low-level neuromodulation as opposed
to high-level value-function approximation (as in Q-learning
and SARSA), making its analogy to low-level biological
processes (in particular Hebbian plasticity) more accessible
and open to study. Future work will focus on more com-
plex domains that require for example behaving in location-
dependent contexts by learning in real time the identifying
features of different locations.

Conclusion
Moving beyond the original demonstration of RAAHN (Pugh
et al., 2014) that depended on an initial autopilot phase, this
paper showed how RAAHN can explore and learn on its own
without an autopilot phase. By maintaining a buffer of expe-
riences representative of the domain, such real-time learning
becomes realistic. This new capability was demonstrated in a
robot control domain where RAAHN learned to steer a robot
through hallways on its own from scratch. The benefit of the
architecture was further demonstrated by showing how much
less its performance degrades compared to a simple Hebbian
network when the sensory inputs become less optimal. The
long-term implication is that RAAHN is a new sandbox and a
new model for experimenting with modulation and reinforce-
ment learning, which in the future can benefit from advances
in both Hebbian learning and autoencoders alike.
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